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Abstract
Pricing algorithms have demonstrated the capa-
bility to learn tacit collusion that is largely unad-
dressed by current regulations. Their adoption in
markets, including oligopolies with a history of
collusion, necessitates further scrutiny by compe-
tition regulators. We extend the analysis of tacit
collusion emerging through learning from sim-
ple pricing games to market domains that model
goods with a sell-by date and fixed supply, such
as airline tickets, perishables, or hotel rooms. We
formalize collusion in this framework and de-
fine a measure based on the price levels under
the competitive (Nash) and collusive (monopoly)
equilibria. Since no analytical formulas for these
prices exist, we illustrate an efficient computa-
tional method. Our experiments show that deep
reinforcement learning agents learn to compete in
both simple pricing games and our domain, while
they show some evidence of learned collusion that
warrants further analysis.

1. Introduction
Algorithms increasingly replace humans in pricing deci-
sions, improving revenue and better managing complex dy-
namics in large-scale markets such as retail and airline tick-
eting. Pricing algorithms, programmed or self-learning, can
engage in tacit collusion—setting supra-competitive prices
(i.e., above the competitive level) or limiting production
without explicit agreements—which eludes detection and
often falls outside current competition laws (Calvano et al.,
2020a). This form of collusion, generally considered illegal,
undermines consumer welfare and competition. The threat
is recognized by regulators, as seen in lawsuits against com-
panies like Amazon (Bartz et al., 2023) and RealPage (Scar-
cella, 2023), with studies like one in Germany showing a
38% increase in fuel retailer margins post-adoption of algo-
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rithmic pricing (Assad et al., 2024). Concerns are mounting
among regulators (Ohlhausen, 2017; Bundeskartellamt &
Autorité de la Concurrence, 2019; Directorate-General for
Competition (European Commission) et al., 2019) and schol-
ars (Harrington, 2018; Beneke & Mackenrodt, 2021; Brero
et al., 2022) that AI-based pricing algorithms could circum-
vent competition laws by learning to collude tacitly, using
strategies unseen in (human) markets and unpredictable by
(human) regulators, without illegal direct communication.

Recent research has shown that reinforcement learning (RL)
agents can tacitly collude in simple pricing games (Calvano
et al., 2020b). We extend this analysis to the new domain of
episodic markets with inventory constraints, which model
sales of perishable goods, hotel rooms, and airline tickets.
We discuss the more complicated competitive and collusive
equilibria of this market and present numerical methods for
deriving them.

Our primary focus is airline revenue management (ARM), a
market under regulatory scrutiny (European Union, 2019)
with evidence of tacit collusion even before the advent
of algorithmic pricing (Borenstein & Rose, 1994). With
$800B in annual revenue and razor-thin net margins, this
highly competitive market, regulated only by general anti-
competition statutes (European Union, 2012)(Art. 101-109),
has moved towards algorithmic pricing (Koenigsberg et al.,
2004). Recent studies explore RL for revenue optimiza-
tion (Razzaghi et al., 2022), citing multi-agent modeling as
a critical next step. We close this research gap by modeling
ARM as a multi-agent RL (MARL) problem, where indepen-
dent agents optimize strategies through interaction (Busoniu
et al., 2008). We employ deep RL to manage larger deci-
sion spaces and more complex dynamics, enhancing agents’
abilities to coordinate (Li, 2018).

This paper is a first step to answering two crucial questions.

1. How, and in which instances, can pricing algo-
rithms learn to collude in realistic markets?

Determining this requires distinguishing collusive behavior
from independent yet parallel responses to market condi-
tions. We propose categorizing collusion into two types:
Agents may learn collectively optimal behaviors individu-
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ally during training, leading to immediate collusive behavior
at an episode’s start, as shown in (Calvano et al., 2020b).
Alternatively, on an intra-episode timescale, agents might
initially act competitively and use price signaling to con-
verge on a common collusive strategy.

2. How can agents be prevented from learning
collusion, or how can the effects of such collusion
on consumers be mitigated?

While research on mitigating strategies that target the train-
ing process or address real-time market collusion is limited,
it is vital for informing policymakers to draft laws robust
against algorithmic collusion (Brero et al., 2022).

In Section 2, we give an overview of related literature. In
Section 3, we define the episodic, finite-horizon pricing
problem with inventory constraints as a Markov Game, in-
spired by ARM, and formalize both competitive (Nash) and
collusive (monopolistic) equilibrium strategies. With these,
we define a measure that quantifies collusion in an observed
episode. In Section 4, we discuss how our model’s finite
time horizon and inventory constraints changes the dynam-
ics of collusion compared to previous work. In Section 5,
we demonstrate efficient computation of the competitive
Nash Equilibrium, a challenging task on its own.

2. Related Work
Our work is related to a line of research into competitive
and collusive dynamics that emerge between reinforcement
learning algorithmic pricing agents in economic games. We
defer to Appendix C for a more detailed literature review.

Recent research most relevant to us focuses on the Bertrand
oligopoly, where agents compete by setting prices, and uses
Q-learning. The main line of research uses Bertrand compe-
tition with an infinite time horizon (Calvano et al., 2020b),
with follow-up work varying the demand model (Asker
et al., 2022), modeling sequential rather than simultaneous
agent decisions (Klein, 2021), or an episodic setting with
contexts (Eschenbaum et al., 2022). Findings reveal fre-
quent, though not universal, collusion emergence, often ex-
plained by environmental non-stationarity preventing theo-
retical convergence guarantees. Agents consistently learn to
charge supra-competitive prices, punishing deviating agents
through ’price wars’ before reverting to collusion. The
robustness of collusion emergence to factors like agent num-
ber, market power asymmetry, and demand model changes
underscores the potential risks posed by AI in pricing.

Which factors support and impede the emergence of learned
collusion remain debated. (Waltman & Kaymak, 2008;
Abada & Lambin, 2023) argue collusion results from agents
‘locking in’ on supra-competitive prices early on due to
insufficiently exploring the strategy space, suggesting a de-

pendence on the choice of hyperparameters. Most studies
identifying collusion used Q-learning, with others show-
ing competitive behavior, raising questions about algorithm
specificity (Sanchez-Cartas & Katsamakas, 2022). How-
ever, evidence from (Koirala & Laine, 2024) using Proximal
Policy Optimization (PPO) in ridesharing markets suggests
otherwise. We expand on these findings in a more realistic
episodic, finite horizon market with inventory constraints
using Deep and Multi-Agent RL through PPO, to manage
our model’s larger state spaces and dynamic environments.

3. Preliminaries and Problem Statement
3.1. Markov game model

We introduce a multi-agent market model for inventory-
constrained goods with a sell-by date, such as perishable
items, hotel rooms, or tickets, using airline revenue man-
agement (ARM) as an example. Here, agents, represent-
ing airlines, compete to sell tickets, each offering a di-
rect flight (single-leg) between the same two points on the
same date. This market is modeled as an episodic Markov
game (S,A, P,R, T ) with n agents (Littman, 1994). Tick-
ets are sold over an episode with a finite time horizon,
t = 0, . . . , T < ∞. Each agent has a finite capacity
Ii ∈ N of total seats that they can sell throughout the
episode and at each time t, a remaining inventory of tick-
ets xi,t ∈ {0, . . . , Ii}, resulting in an inventory vector
xt = (x1,t, . . . , xn,t). An agent’s marginal cost per sold
ticket, ci, is constant.

Each period, all agents observe the current state st ∈ S and
each simultaneously use their policy πi : S → Ai to choose
an action in the form of a price pi,t = πi(st), forming the
price vector pt = (p1,t, . . . , pn,t). The state st = (pt−1, xt)
comprises the last price and inventory vectors, representing
a one-period memory. We also assume full observability,
allowing all agents to see competitors’ past prices and cur-
rent inventories. Real-time information on offered ticket
prices and inventories (though airlines may hold some in
reserve) is collected by Global Distribution Systems (GDS)
like Amadeus, and is publicly available at a cost.

State transitions occur according to P (st+1|st, pt). For each
agent i, the market determines a demand di,t at time t, the
agent sells a corresponding quantity qi,t = min(di,t, xi,t)
and their inventory is updated to xi,t+1 = xi,t − qi,t. Fi-
nally, the agent receives a reward corresponding to their
profit Ri,t = (pi,t − ci)qi,t. Agents pick actions aiming to
maximize expected future rewards E[ΣT

s≥tRi,s]. The initial
state s0 uses dummy values, signaling the beginning of an
episode and allowing agents to choose the initial prices. To
obtain a finite action space necessary for many learning
algorithms, we model it as a discretized interval of possible
prices. We do not model cancellation and overbooking.
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3.2. Demand model

We employ a modified multinomial logit (MNL) demand
model, commonly used in Bertrand price competition, to
simulate the probability of a customer choosing each agent’s
product, ensuring demand distribution among all agents
rather than clustering on the “best” offering.

Each agent’s product has a quality αi. There is an out-
side good with quality α0 for vertical differentiation, and
a parameter µ that signifies horizontal differentiation. The
demand for product i = 1, . . . , n in period t is given by
d(pi,t, p−i,t) := ⌊λdi,t⌋, where

di,t =
exp

(
(αi − pi,t)/µ

)∑
j∈Na

t
exp

(
(αj − pj,t)/µ

)
+ exp(α0/µ)

∈ (0, 1),

Na
t := {j ∈ N | xj,t > 0} and λ ∈ N.

We incorporate choice substitution, or demand adaptation,
by summing only over agents with available inventory. If
an agent is sold out, demand shifts to those with remaining
inventory, preventing the sold-out agent’s actions from af-
fecting the demand and rewards of others. Demand values
are scaled by λ > 1 and rounded to the nearest integer to
account for the sale of goods (tickets) in whole numbers.

3.3. Measuring collusion and competition

We categorize an observed episode and observed agent
strategies on a scale from “competitive” to “collusive” by
defining an episodic collusion measure. We first define the
two necessary equilibria in the Markov game:

Definition 3.1. A collection of agent policies is called

• Competitive, or Nash equilibrium if no agent i can
improve their expected total episode profit E[ΣT

t=1Ri,t]
by unilaterally picking a different policy given fixed
opponent strategies.

• Collusive, or monopolistic equilibrium if it maximizes
the expected total agent profit E[Σn

i=1Σ
T
t=1Ri,t].

Using the prices set by agents in both the Nash- and monopo-
listic equilibrium, pN , and pM , and the corresponding agent
profits RN , RM , we can define the following measure.

Definition 3.2. For agent i’s profit in the observation, Nash,
and collusive equilibria as R̄i, R

N
i , RM

i respectively, the
agent’s episodic profit gain is

∆i,e :=
1

T

T∑
t=1

R̄i,t −RN
i,t

RM
i,t −RN

i,t

.

The episodic collusion index is calculated as

∆e :=
( n∏
i=1

∆i,e

) 1
n

,

indicating a competitive or collusive outcome at 0 or 1,
respectively.

We employ the geometric mean in our collusion index, as
opposed to the simple average used in previous studies (Cal-
vano et al., 2020b; Eschenbaum et al., 2022), as it more
strongly penalizes unilateral competitive defections in a col-
lusive arrangement. Exploring alternative measures, which
could be inspired by social choice theory, is a promising
avenue for future research.

4. Overview of the collusive strategy landscape
Previous work has focused on infinitely repeated games. We
discuss how our model’s episodic nature and finite inventory
significantly affect the strategies for establishing and main-
taining learned tacit collusion. In general, collusion must
first be established by agents exploring non-competitively
optimal behaviors and discovering mutually beneficial
strategies, or using actions as covert signals to communicate
and form agreements. To maintain collusive agreements,
agents need to remember past actions and have mechanisms
to punish those who deviate from the agreed-upon strategy.

Infinitely repeated games These settings allow for de-
riving competitive and collusive equilibrium price levels
through implicit formulas. They provide the most room for
collusive strategies to emerge and sustain. Typically, stable
collusion manifests in two forms. First, reward-punishment
schemes: Agents cooperate by default and punish devia-
tions. A deviating agent is punished by others charging
competitive prices, thereby removing the benefits of col-
lusion temporarily, until the supra-competitive prices are
reinstated. This dynamic involves agents synchronizing over
rounds to restore higher price levels after a deviation. This
pattern can be observed as fixed, supra-competitive prices
and verified by forcing one agent to deviate and record-
ing everyone else’s responses, as done in (Calvano et al.,
2020b). Second, Edgeworth price cycles: This pattern in-
volves agents sequentially undercutting each other’s prices
until one reverts to the collusive price, prompting others to
follow, restarting the undercutting cycle (Klein, 2021).

Episodic games Collusive strategies can now emerge ei-
ther intra-episode through action-based communication or
across multiple episodes, with agents displaying collusion
from the onset of a new episode. (Eschenbaum et al., 2022)
find that the latter form, possibly due to strategy overfit-
ting to familiar opponents, is prevalent in oligopolistic set-
tings, seeing collusive agents play competitively against
new opponents before re-establishing collusion through con-
tinued learning. We are especially interested in observing
intra-episode collusion, as many real marketplaces feature
frequently changing participants.
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The episodic nature limits the efficacy of traditional reward-
punishment schemes in maintaining collusion. If every
single period of the game has a unique Nash equilibrium, as
is the case in the Bertrand setting, backward induction from
the last timestep T suggests agents should deviate to play
the Nash strategy, undermining stable collusion. Does this
mean that collusion in episodic games is impossible? No:
If agents remember past interactions across episodes, past
deviations can be punished in future episodes. Our exper-
iment in Figure 2 shows that even without that possibility, if
episodes are long enough, learning agents may still converge
to collusive strategies of the signaling, stable or cyclic kind,
as discovering the backward induction argument through (of-
ten random) exploration may be unlikely enough in practice.

Our model Besides the episodic structure, inventory con-
straints significantly expand the state and strategy space by
linking pricing to inventory levels, complicating the predic-
tion and interpretation of collusion. Determining the com-
petitive and collusive price levels becomes more complex
because the solution formulas from the Bertrand or Cournot
settings require smoothness or convexity assumptions that
no longer hold. We approach finding a Nash equilibrium by
modeling each episode as a simultaneous-move game where
agents set entire price vectors, detailed in Section 5.1. We
solve the resulting generalized Nash equilibrium problem
numerically and prove that its solutions are Nash equilibria
in our Markov game. We find that in our model, collu-
sion can occur without a punishment scheme: given fixed
total demand and sufficient (surprisingly light) inventory
constraints, competitive pricing may naturally align with
collusive levels. We see that both episodic equilibria consist
of repeating their one-period equivalents T times. If agents
discount future rewards, both equilibria shift to lower prices
and higher profits early in the episode and vice-versa toward
its end. Additionally, the competitive and collusive equi-
libria remain distinct even with strict inventory constraints.
Due to the difficulty of predicting or interpreting observed
behavior in this complex setting, we see value in analyzing
different types of learners as part of future work.

5. Experiments
Our experiments explore obtaining Nash and collusive equi-
libria in our episodic market model. We present initial
results from settings with and without inventory constraints,
where a learner exhibits collusion in the episodic setting and
competition when inventory constraints are present.

5.1. Obtaining competitive and collusive price levels

Previous works’ Bertrand settings use analytic formulae to
compute Nash and monopolistic equilibrium price vectors
pN and pM for single-period cases. However, our multi-

period model and the complexity added by inventory con-
straints necessitate a different approach. We model an entire
episode as a simultaneous-move game (SMG), where all
agents i must simultaneously decide all T prices in their
vector p(i) = (pi,1, . . . , pi,T ). Let p = (p(1), . . . , p(n)) en-
compass all agents’ price vectors, with p(−i) representing all
agents’ vectors except i’s. Each agent, given fixed opponent
strategies p(−i), aims to solve:

max
p(i)

T∑
t=1

(pi,t − c)⌊λdi,t⌋ (1)

subject to
T∑

t=1

⌊λdi,t⌋ ≤ I, p(i) ≥ 0. (2)

Definition 5.1. The Generalized Nash Equilibrium
Problem (GNEP) consists of finding the price vector
p∗ = (p(1)∗, . . . , p(n)∗) such that for each agent i, given
p(−i)∗, the vector p(i)∗ solves their inventory-constrained
revenue maximization problem.

This vector represents a Nash equilibrium, as each agent
maximizes their revenue under the assumption of fixed com-
petitor actions. Solving the GNEP is difficult since each
agent’s constraints depend on the other agents’ strategies
through the MNL demand di,t, which is a function of both
agent i’s and the other agents’ chosen prices. A solution
price vector can be interpreted as the actions of a set of
(unknown) agent policies playing an episode of the Markov
game. Above we assumed that environment transitions and
initial state are deterministic.

Lemma 5.2. Assume deterministic transitions and policies
playing pure strategies. Let p∗ = (p(1)∗, . . . , p(n)∗) from
the SMG solve the GNEP. Then, the set of policies π∗ =
(π∗

1 , . . . , π
∗
n), where π∗

i (st) = p∗i,t for all i, t, and st ∈ S,
is a Nash equilibrium in the Markov Game.

The full proof can be found in Appendix D. Details on
our numerical approach for solving the GNEP are found in
Appendix A.

We find that in the undiscounted case, the episodic equi-
librium price vectors repeat the single-period equilibrium
with the same parameters T times. Figure 3 illustrates how
inventory constraints influence the market’s competitive
dynamics. If agents’ inventories are bigger than the de-
mand they would satisfy in the competitive equilibrium, the
equilibria correspond to the unconstrained setting. As inven-
tories are set smaller, the competitive price level increases
as it becomes harder for firms to undercut and profit from
the increased demand. At a constraint level equaling the
demand under the collusive price, there is no more room
for competition and tightening constraints even further in-
creases the now coinciding competitive and collusive prices.
We set inventory constraints on agents to a level between
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the demands at monopolistic and Nash equilibrium prices,
allowing differentiation between competitive and collusive
behavior and a well-defined collusion index.

5.2. Learned collusion in our model

We implement our agents using proximal policy optimiza-
tion (PPO), contrasting with prior research that predomi-
nantly employs tabular Q-learning in the Bertrand setting.
Given the complex state space of our model, function ap-
proximation is necessary, and the choice of PPO over deep
Q-networks (DQN) adds to the discussion of how collu-
sion emergence is influenced by the learning algorithm
used. PPO operates by simulating trajectories and adjusting
the policy distribution’s parameters based on observed out-
comes. To discover collusion, agents must initially explore
sufficiently but reduce exploration once collusion is estab-
lished to avoid random deviations that might disrupt the
collusive agreement. Since PPO picks actions via sampling
from its policy distribution, controlling the degree of explo-
ration vs exploitation is not as straight-forward as tuning
the previously used ϵ-greedy (deep) Q-learners’ parameter
ϵ. We implement PPO and the market environment using
JAX, with training logic adapted from (Willi et al., 2023).

Our evaluation setup features two agents and a five-step
time-horizon. The other parameters are inspired by (Calvano
et al., 2020b) and can be found in Appendix B.

Figures 1 and 2 demonstrate that PPO agents can learn to
set supra-competitive prices in non-inventory constrained
episodic settings. This behavior hinges on training over
numerous epochs (50) on single-episode rollouts. Larger
learning rates disrupt this collusion, aligning with previous
works’ findings that used Q-learners. One can guide PPO
agents toward quickly learning competition in our market
environment by using rollouts with a large amount (e.g.,
4096) of episodes between training steps, simulated in
parallel. This works with learning rates as small as 0.0003
or as large as 0.01 and an entropy coefficient of 0.01.

Figure 1. With constrained inventory, agents learn competition.
Without inventory constraints, they display cyclic collusion.

Figure 2. In an episodic, non-inventory constrained setting, agents
display cyclic supra-competitive prices.

Figure 3. The effect of inventory constraints on the one-period
equilibrium price levels for two agents with equal inventory capac-
ities. The demand for each agent in the competitive and collusive
equilibrium is 470 and 365, respectively.

6. Conclusion
We have developed a Markov game model tailored for Air-
line Revenue Management (ARM), facilitating the analysis
of tacit collusion within finite time horizon and inventory-
constrained markets. We have shown methods to obtain
competitive and collusive equilibria in our model. Addition-
ally, we have deployed a multi-agent reinforcement learning
framework using proximal policy optimization (PPO), show-
ing that agents can both learn to compete in our model as
well as engage in collusive behavior if inventory constraints
are lifted.

Future efforts will focus on a deeper exploration of the po-
tential for algorithms like PPO and opponent-shaping agents
(Souly et al., 2023) to facilitate collusion in a MARL set-
ting. We aim to develop strategies to prevent collusion from
being learned in training (Brero et al., 2022) or established
through real-time market signaling. We plan to enhance
our model with additional ARM-specific elements such as
overbooking and cancellation policies.
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A. Numerical solution strategy for Nash and monopolistic equilibria
To solve the GNEP for competitive equilibrium prices, we use a Gauss-Seidel-type iterative method (Facchinei & Kanzow,
2007). We start with an initial price vector guess and proceed through a loop where each iteration updates each agent’s
price by solving their subproblem. For agent i at iteration k, it uses the fixed opponent prices from the latest estimate. The
process repeats until convergence to p∗.

Each agent’s subproblem is a mixed-integer, nonlinear optimization problem (MINLP), with neither convex objectives nor
constraints. We use Bonmin, a local solver capable of handling larger instances at the risk of missing global optima. We
mitigate this by initiating the solver from multiple different starting points. For the collusive equilibrium, we simulate a
scenario where one agent sells n items, aiming to maximize the total episodic revenue under n inventory constraints. This
problem is again a non-convex MINLP. Our implementation uses the open-source COIN-OR solvers via Pyomo in Python.

B. Evaluation setting
Our evaluation setting features n = 2 agents, qualities αi = 2, equal marginal costs c = ci = 1 ∀i, a horizontal
differentiation factor of µ = 0.25, an outside good quality of α0 = 0, demand scaling factor of λ = 1000 and inventory
constraints of 420∗5 = 2100. The prices and demands in the unconstrained one-period Nash and monopolistic equilibria are
pN = 1.471, pM = 1.925 and dN = 470, dM = 365 respectively. The constrained case features the identical monopolistic
equilibrium, but a Nash equilibrium with pN = 1.759 and dN = 420. Agents choose prices from a discretized interval
[pN − ξ(pM − pN ), pM + ξ(pM − pN )] with 20 steps and ξ = 0.231.

C. Literature Review
Examples and description of tacit collusion Firms across various sectors, from insurance to flight tickets, employ
algorithmic pricing to maximize revenue by leveraging data on market conditions, customer profiles, and other factors.
These algorithms’ growing complexity raises challenges for maintaining fair competition and detect firms that tacitly
collude, ones which jointly set supra-competitive prices (i.e., above the competitive level) or limit production without explicit
agreements or communication. Recently, evidence has emerged that companies are already using algorithmic pricing to
inflate prices market-wide at the cost of consumers. For instance, (Assad et al., 2024) showed that German fuel retailer
margins increased by 38% following the widespread adoption of algorithmic pricing. Other examples are found in setting
credit card interest rates (Ausubel, 1991) and consumer goods markets (Genesove & Mullin, 2001).

Legal developments around algorithmic collusion Current anti-collusion policies mainly address explicit agreements,
making tacit collusion, which is inferred from company behaviors rather than evidence of an agreement, more elusive
and difficult to prove. There is growing concern among regulators (Ohlhausen, 2017; Bundeskartellamt & Autorité de la
Concurrence, 2019; Directorate-General for Competition (European Commission) et al., 2019) and researchers (Harrington,
2018; Beneke & Mackenrodt, 2021; Brero et al., 2022) that AI-based pricing algorithms might evade competition laws by
colluding tacitly, without direct communication or explicit instruction during learning. This highlights the need for better
strategies to prevent collusion or mitigate its negative effects on the market.

Reinforcement learning (RL) background Reinforcement learning (Sutton & Barto, 2018) is an advanced segment of
machine learning where agents learn to make sequential decisions by interacting with an environment. Unlike traditional
machine learning methods which rely on static datasets, RL emphasizes the development of autonomous agents that
improve their behavior through trial-and-error, learning from their own experiences. This approach enables agents to
understand complex patterns and make optimized decisions in scenarios with uncertain or shifting underlying dynamics.
Multi-agent RL extends this concept to scenarios involving multiple decision-makers, each optimizing their strategies while
interacting with others and the environment (Busoniu et al., 2008). In MARL settings, agents can be incentivized to behave
competitively, as seen in zero-sum games like Go (Silver et al., 2017; 2018), cooperatively, like in autonomous vehicle
coordination (Dinneweth et al., 2022) or a mix of the two that includes our problem, i.e., markets and pricing games. MARL,
while posing challenges such as non-stationarity and scalability, enables agents to adapt to and influence competitors’
strategies, facilitating tacit collusion.

Collusion & regulation in airline revenue management (ARM) Originally a strictly regulated sector with price
controls, ARM was deregulated in 1978 in the US and Europe, leading to a competitive landscape of private carriers whose
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pricing strategies are subject only to general laws against anti-competitive behavior (European Union, 2012)(Art. 101-
109). However, this deregulation has caused market consolidation, prompting regulatory responses to protect competition
(European Union, 2019). Even prior to algorithmic pricing, regulators have identified pricing behaviors suggestive of
tacit collusion (Borenstein & Rose, 1994), underscoring the challenge of distinguishing between collusive behavior and
independent but parallel responses to market conditions.

Background on the field of revenue management (RM) Each of the agents that we model is individually maximizing
their revenue, relating our work to the field of revenue management (RM) (Talluri & Van Ryzin, 2004). As a competitive
market with slim net margins, airlines are increasingly turning to dynamic pricing (Koenigsberg et al., 2004) beyond
traditional quantity-based and price-based RM, replacing the hugely popular expected marginal seat revenue (EMSR)
models (Belobaba, 1987). Our problem falls into the price-based RM category, even though we do model aspects of capacity
management with our inventory constraints. In quantity-based RM, agents decide on a production quantity with the price for
their good being the result of a market-wide fixed function of that decision, and models often impose no limit on the offered
quantity. In our model, agents decide their price, and demand results from a market-wide function. Our aim is for agents
to learn to predict the impact of their pricing choices on the demand and thus sold quantity, in order to optimally use the
constrained inventory that they have.

Learning in general RM In recent years, reinforcement learning agents have seen increased use in revenue management
outside of the airline context. Examples include learning both pricing and production quantity strategies in a market with
perishable goods (Wang et al., 2021), producing a pricing policy by learning demand (Rana & Oliveira, 2014; 2015) and
analyzing the performance of different popular single-agent RL in various market settings (Kastius & Schlosser, 2022) (here
Q-learning and Actor-Critic). The use of largely uninterpretable learned choice or pricing models introduces new challenges,
such as deriving economic figures like the elasticity of demand with respect to price (Acuna-Agost et al., 2023).

Learning in ARM While early work used e.g. heuristically solved linear programming formulations (Bront et al., 2009)
or custom learning procedures (van Ryzin & McGill, 2000; Bertsimas & de Boer, 2005), recent studies have explored
single-agent reinforcement learning in ARM to learn optimal pricing (Razzaghi et al., 2022). These model the problem
as a single-agent Markov decision problem (MDP) (Gosavi et al., 2002; Lawhead & Gosavi, 2019) and consider various
realistic features like cancellations and overbooking (Shihab & Wei, 2022). The application of deep reinforcement learning
(deep-RL) (Mnih et al., 2015) is growing in this complex market (Bondoux et al., 2020; Alamdari & Savard, 2021), but
these models often overlook the multi-agent nature of the airline market. We model the market as a multi-agent system with
individual multi-agent learners, a critical yet unexplored aspect in current research (Razzaghi et al., 2022).

D. Proof of Lemma 1
Proof. Let us introduce some terminology first.

Definition D.1. Fix an agent i with policy πi or price vector p(i), and fix opponent policies π(−i) or prices p(−i).

• A useful deviation is a policy π′
i or price vector p(i)

′
that strictly increases i’s revenue over the whole episode compared

to playing πi or p(i). We use this term in both the Markov game and SMG.

• We call a price vector p(i) = (pi,1, . . . , pi,T ) feasible in the GNEP if it fulfils the inventory constraint of i’s revenue
maximization problem in Equation (1), and infeasible in the GNEP if it doesn’t.

• We call a policy πi simple, if at each time t, it outputs the same value for all states st, i.e. ∀t ∀st : πi(st) ≡ constt.

Intuitively, we construct a set of simple policies where each agent always plays their GNEP solution, no matter the state, and
show that this set of policies is a Nash equilibrium.

First, observe that those simple policies result in the same set of price vectors p∗ in every evolution of the Markov game. In
particular, fixing opponent strategies π(−i)∗ results in agent i facing the same fixed opponent price vectors p(−i)∗ (from the
GNEP solution) in every evolution of the Markov game. Therefore, to prove that π∗ is a Nash equilibrium in the Markov
game it’s enough to prove that for any agent i and fixed opponent price vectors p(−i)∗, there doesn’t exist a useful deviation
price vector p(i)

′ ̸= p(i). If a useful deviation policy π′
i existed for i, in at least one timestep t it would have to pick a price

p′i,t ̸= pi,t, so by ruling out a useful price vector deviation we also rule out a useful policy deviation.

Claim: Let p(−i) be fixed opponent price vectors. Given any price vector p(i) for agent i, there always exists a price vector
p̄(i) that is feasible in the GNEP and such that playing p̄(i) results in revenue for i that is as great as or greater than that
from playing p(i).

10



Collusion of RL-based Pricing Algorithms in Episodic Markets

Given opponent prices p(−i)∗, if a useful deviation p(i)
′ ̸= p(i)∗ exists for agent i, it must be infeasible in the GNEP

(otherwise p(i)∗ wouldn’t be a revenue-maximizing solution to agent i’s GNEP’s subproblem). However, since the claim
implies that we could construct a p̄(i) that is feasible in the GNEP and has equivalent revenue for i as the infeasible p(i)

′
,

it would be a useful deviation for agent i in the SMG to play p̄(i) given p(−i)∗, contradicting the assumption that p∗ is a NE.

Proof of Claim: Let opponent prices be fixed p(−i). Let p(i) a price vector in the Markov game that’s infeasible in
the GNEP (otherwise we’re trivially done). Let i’s inventory at t be xt. Let t̂ ∈ {1, . . . , T} be the sell-out time, i.e.
the last timestep in which i has nonzero inventory, meaning t̂ := max{t ∈ {1, . . . , T}|xt̂ > 0} such that xt̂ = 0 and
∀t > t̂ : xt = 0. Let d(pi,t, p(−i),t) := ⌊λdi,t⌋ be the scaled, truncated MNL demand of agent i at time t given price vector
p, which is a decreasing function in pi,t.

Define

p̄i,t̂ := sup{q | d(q, p(−i),t̂) = xt̂}

p̄i,t ∈ {q | d(q, p(−i),t) = 0} ∀t > t̂.

Then, let p̄(i) := (pi,1, . . . , pi,t̂−1, p̄i,t̂, p̄i,t̂+1, . . . , p̄i,T ).

Given the other agents’ fixed price vectors p(−i), the vector p̄(i) is feasible in the GNEP. To see this, consider that every
price vector has a sell-out time t̂. At any point in time before t̂, the accumulated demand up until that time is lower than
inventory, otherwise t̂ wouldn’t actually be the sell-out time. The GNEP’s feasibility constraint is only violated if at t̂,
demand is larger than remaining inventory xt̂, or if at any t > t̂, demand is larger than 0. The construction of p̄(i) ensures
that it has the same sell-out time t̂, and the construction of p̄i,t for t ≥ t̂ ensures that demand at t̂ matches inventory left,
and that demand at t > t̂ is zero, meaning that p̄(i) cannot violate the feasibility constraint.

Now we just need to prove that given fixed opponent prices p(−i), agent i’s reward in the Markov game when playing p̄(i)

is as great as or greater than their reward when playing p(i). Their reward when playing p(i) is given by

Σt̂−1
t=1(pi,t − c)min

(
d(pi,t, p(−i),t), xt

)
+ (pi,t̂ − c)min

(
d(pi,t̂, p(−i),t̂), xt̂

)
+ΣT

t=t̂+1
(pi,t − c)min

(
d(pi,t, p(−i),t), xt

)
We now replace p(i) with p̄(i) and compare each term.

In the first term, as we know that for t < t̂ i’s demand is always lower than their inventory by definition of t̂, the term
reduces to

Σt̂−1
t=1(pi,t − c)d(pi,t, p(−i),t).

Since pt = p̄t, we see that the first revenue term’s value stays equal:

Σt̂−1
t=1(pi,t − c)min

(
d(pi,t, p(−i),t), xt

)
= Σt̂−1

t=1(pi,t − c)d(pi,t, p(−i),t) = Σt̂−1
t=1(p̄i,t − c)d(p̄i,t, p(−i),t).

In the second term, by definition of t̂, we know that min
(
d(pi,t̂, p(−i),t̂), xt̂

)
= d(pi,t̂, p(−i),t̂) = xt̂, thus the term reduces

to
(pi,t̂ − c)d(pi,t̂, p(−i),t̂).

Since d(pi,t̂, p(−i),t̂) ≥ xt̂, and by construction d(p̄i,t̂, p(−i),t̂) = xt̂, and d(·, p(−i),t̂) decreasing, we get p̄i,t̂ ≥ pi,t̂. We
also know that i will always choose a price ≥ c to ensure non-negative revenue. Thus, we see that the second revenue
term’s value can only increase:

(pi,t̂ − c)min
(
d(pi,t̂, p(−i),t̂), xt̂

)
= (pi,t̂ − c)d(pi,t̂, p(−i),t̂) ≤ (p̄i,t̂ − c)d(p̄i,t̂, p(−i),t̂).

In the third term, by definition of t̂, we know that ∀t > t̂ : xt = 0, and since by construction of p̄(i) we also know that
∀t > t̂ : d(p̄i,t, p(−i),t) = 0, we see that the term’s value remains zero:

ΣT
t=t̂+1

(pi,t − c)min
(
d(pi,t, p(−i),t), xt

)
= ΣT

t=t̂+1
(p̄i,t − c)d(p̄i,t, p(−i),t) = 0

Putting all three terms together, agent i’s revenue from playing p̄(i) is as great as, or greater than that from playing p(i).
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